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Introduction 
Ongoing and proposed studies of the National 

Airspace System (NAS) are attempting to quantify 
its performance in order to gauge the impact of new 
equipment and procedures, and potentially to 
establish organizational performance goals for the 
Federal Aviation Administration (FAA).  The 
dynamic nature of the NAS environment, which 
reflects the continual change in weather and traffic 
composition, makes comparing different periods of 
time problematic.  New methods to normalize for 
these effects are needed in order to make more 
accurate assessments of system performance and 
facilitate informed decisions. 

This paper presents an analytical framework 
for conducting NAS-wide performance 
assessments.  The proposed approach segments the 
national airspace into a two-dimensional grid; 
superimposes flight tracks, flight plans, convective 
activity, and convective forecasts onto this grid; and 
then uses statistical techniques to compare these 
densities.  In this manner one can quantify such 
things as the difference between planned and actual 
routes, the accuracy of convective forecasts, the 
impact of severe weather on traffic, etc.  The use of 
two-dimensional statistical techniques borrowed 
from the fields of image processing and 
geostatistics can remove much of the arbitrariness 
involved in previous approaches, which attempt to 
match similar days. 

The first section of the paper describes the 
specific types of data that may be used to compute 
density grids, and proposes general methodologies 
for analyzing these densities.  In the next two 
sections, we present two detailed analyses that 
illustrate how one might use the density grid 
concept.   

In the first example analysis, we use the 
densities of lightning strikes and flight plan tracks 

to generate an estimate of the impact of the severity 
of convective weather on en route efficiency.  From 
this estimate, we compute a daily index, which can 
be used to normalize for the effects of varying en 
route weather.  The analysis includes a statistical 
comparison of the resulting index to various 
generally accepted indices of NAS-wide delay for 
20 days during the spring and summer of 2001.  
The proposed en route weather index exhibits a 
significant correlation with these delay indices. 

The second example analysis presents a 
method for quantifying the impact of convective 
weather on en route efficiency.  In this application, 
we examine the difference between the density of 
actual flight tracks and planned flight tracks.  This 
difference indicates if and when flights were 
rerouted.  We compare the difference grid to a 
lightning strike grid by computing the spatial cross 
correlation of the two matrices.  The cross 
correlation provides a robust and convenient 
method to relate the changes in flight plans to the 
convective activity.  We then compute a 
“correlation distance” of the cross correlation 
matrix, which distills the matrix down to a single 
value that represents the distance beyond which 
traffic was not perturbed.  By comparing this 
correlation distance over different time periods, we 
can get an indication of the effectiveness of traffic 
flow management initiatives on rerouting aircraft 
around severe weather. 

Flight Track and Convective Weather 
Density Grids 

Typically, the efficiency of national airspace is 
studied on a flight-by-flight basis by comparing 
some representation of the “desired” flight 
trajectory to the actual trajectory.   This approach 
has its merits, but it may not be ideal for studying 
the impact of adverse weather on traffic, or for 
analyzing the effectiveness of Traffic Flow 
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Management (TFM) initiatives.  Specifically, there 
is no indication of enroute traffic congestion or 
weather in presently available individual flight data 
sources.  We propose an approach based on the 
time-varying densities of traffic and weather 
effects. 

We begin by superimposing a two-dimensional 
“rectangular” grid over the airspace of the 
contiguous 48 states.  We typically use a grid size 
of 0.5 degrees of longitude by 0.5 degrees of 
latitude, but this size may vary depending on the 
application.  We then compute densities of flight 
tracks or weather events in those grid cells and 
compare these densities statistically in order to 
assess NAS performance. 

To date, the following data have been 
suggested as sources for density computations and 
related analyses: 

• Flight plan tracks 
• Actual flight tracks 
• Great circle flight tracks 
• Wind-optimal flight tracks 
• Forecast convection 
• Actual convection. 

 
For the analyses presented in this paper, we 

focused on flight plan tracks, actual flight tracks, 
and actual convection.  We use Enhanced Traffic 
Management System (ETMS) data to compute 
flight plan and actual track densities, and cloud-to-
ground lightning strike data (as recorded and 
archived by Vaisala-GAI Inc. [1]) to gauge 
convective activity.   

Flight plan tracks provide an indication of 
where (and when) traffic desires to go.  Depending 
on the application, we can use either ETMS FS 
messages (scheduled flight plans), FZ messages 
(filed flight plans), or AF messages (amended flight 
plans) [2] to examine the desired path at different 
times before and during a flight.  We use the filed 
estimated time en route (ETE) and flight plan 
distance to estimate an average ground speed for the 
flight.  We then generate pseudo-track points for the 
flight plan route at 1 minute time increments along 
the proposed route of flight.  These pseudo-track 
points are used to compute flight plan densities. 

Actual tracks obviously tell us where the 
traffic really went.  Figure 1 illustrates a sample 
grid of flight track densities, using a 0.5 degree 
grid, for a one hour time period.   

In the enroute environment, convective 
weather is the most disruptive to flights.  Cloud-to-
ground lightning data is an indication of such 
convective activity.  To form densities, we simply 
count the number of cloud-to-ground strikes during 
a given time period in a given cell.  Figure 2 
illustrates a sample lightning strike density grid for 
a 15 minute period. 

In future studies we may wish to use great 
circle tracks, wind-optimal tracks, or different 
measures of predicted or actual weather to form 
densities.  By computing a great circle routing or 
wind-optimal routing between origin and 
destination airports, we can compute densities of 
shortest-path or shortest-time routes. Great circle 
routes are simple to calculate, while wind-optimal 
routes can be found by using a mathematical model 
such as OPGEN [3].  We could also use the 
Collaborative Convective Forecast Product (CCFP) 
or National Convective Weather Forecast (NCWF) 
to compute the density of forecast convective 
activity, and either NEXRAD radar data or 
lightning strike data to compute actual convective 
activity density.  We used the previously mentioned 
cloud-to-ground lightning strike data because we 
found it to be the most convenient. 

En Route Weather Severity Index 
As a first example illustrating the method of 

computing densities of flight paths and convective 
activity, we developed an en route weather severity 
index.  This index may be used to normalize for the 
effects of convective activity when analyzing the 
performance of en route airspace.  Our index is very 
similar to the Weather Impacted Traffic Index 
(WITI) developed at the MITRE Center for 
Advanced Aviation System Development (CAASD) 
[4].  The differences between the two indices are 
discussed later in this section.  In the example given 
below, we computed this index daily on a national 
level, but it could just as easily be computed locally 
or for smaller time periods. 
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Figure 1.  Flight Track Density Example, 0.5 by 0.5 Degree Grid 
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Figure 2.  Lightning Strike Density Example, 0.125 by 0.125 Degree Grid 
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The approach essentially scales cloud-to-
ground lightning strike data by the number of 
flights that planned to be in the vicinity of the 
lightning.  Flight plans are used instead of actual 
tracks, since aircraft will likely have maneuvered or 
been delayed in order to avoid thunderstorms.  
Initial flight plans, on the other hand, should reflect 
where users actually desired to go, given airspace 
constraints. 

To construct this index we partitioned the 
airspace of the Continental United States (CONUS) 
into a grid of 0.125 degree by 0.125 degree cells.  
For each cell, we count the number of lightning 
strikes in a 15 minute period (see Figure 2).  We 
then estimate the number of aircraft that planned to 
be in each grid cell during the same period of time, 
using data from ETMS FS messages and 
interpolating as described in the first section.  
Finally, we take the product of the log of one plus 
the number of lightning strikes and the number of 
flight plan points in each grid cell, sum all of the 
cells for the 15 minute interval, and scale by a 
constant representing the approximate area of a cell 
at the equator, i.e., 
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The process is then repeated for each 15 
minute interval in a day, the values are summed, 
and an index is obtained that reflects the severity of 
convective weather relative to the traffic that was 
planned on that day.  The logarithm of the lightning 
strike density is used to reflect the fact that the 
number of recorded strikes is nonlinearly related to 
the severity of convection. 

We have calculated this en route weather index 
for 20 days from the summer of 2001, and 
compared it to several popular measures of NAS-
wide delay.  We would expect there to be a strong 
relationship between the weather index and en route 
delays.  Figure 3 plots the Aviation System 
Performance Metrics (ASPM) NAS-wide average 

arrival delay (relative to flight plans)1 against the en 
route weather severity index.  There is good 
correlation between this delay metric and the 
weather index.  An ordinary least-squares 
regression of the weather index on ASPM average 
arrival delay yields a coefficient of determination 
(i.e., R2) of approximately 0.76.  Figure 4 plots the 
ASPM on-time arrival rate for the same days 
against the en route weather index.  Again, the 
correlation is good, with an R2 value of 0.72. 
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Figure 3.  ASPM Average Arrival Delay vs. En 
Route Weather Severity Index 
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Figure 4.  ASPM On-Time Arrival Rate vs. En 
Route Weather Severity Index 

                                                      
1 ASPM arrival delay relative to flight plan is the difference 
between actual gate-in time and “flight plan” gate-in time, 
where the latter is the sum of the flight plan gate-out time and 
the scheduled block time from the Official Airline Guide [5]. 
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While both our approach and the MITRE WITI 
place a grid over the CONUS airspace and multiply 
convective activity by some measure of traffic 
intensity in each cell of the grid, there are two 
major differences between the two approaches.  
First, the WITI uses NCWF severe weather 
polygons as the source for convective activity.  
Second, the WITI uses actual flight tracks from a 
“good weather day” as the data source for traffic.  
Our approach, on the other hand, uses flight plan 
traffic for the particular day being analyzed.  Our 
approach has the advantage of being more dynamic, 
in that day-to-day (and consequently weekly, 
monthly, and seasonal) changes in traffic are 
accounted for.  Then again, there is some question 
as to whether the flight plan routes contained in the 
ETMS FS message already take en route weather 
into account. 

Traffic/Convective Weather Spatial 
Cross Correlation 

In the second application of using flight plan 
and flight track densities, we developed a method 
for quantifying the impact of convective weather on 
en route efficiency.  In order to make the problem 
numerically tractable, we group the gridded 
CONUS airspace cells into overlapping regional 
partitions that measure approximately 4.4 degrees 
in longitude by 4.4 degrees in latitude.  We start by 
computing densities for both the planned and actual 
flight tracks for a given partition.  We then calculate 
the difference between these two matrices, cell by 
cell, producing a matrix that represents the 
geographic rerouting of traffic.  Next, we compute 
the spatial cross correlation between this difference 
matrix and an equivalent partitioning of the cloud-
to-ground lightning strike density matrix.  The 
resulting cross correlation matrix is a two-
dimensional statistical representation of the impact 
that en route weather had on the rerouting of traffic 
for the partition.  We calculate the magnitude of this 
cross correlation as a function of the distance from 
convection, and, if the partition satisfies a threshold 
condition, we estimate a “correlation length,” which 
may be thought of as the distance beyond which 
aircraft are not affected by the convective activity.  
Finally, we repeat the process for each partition.  
The resulting correlation lengths can be plotted over 
a map of the nation to gauge local efficiency, or 

averaged to provide an indication of the efficiency 
of rerouting traffic on a national scale.  The 
procedure is described in more detail below, with 
an example using actual traffic. 

Let Li,j be the gridded density of lightning 
strikes, and Di,j the gridded density of the difference 
between planned and actual traffic, where  
i = - M…M and j = - N…N.  Figure 5 illustrates the 
difference grid (Di,j) for a representative partition 
over central Florida for the fifteen minute period 
beginning at 22:00 Coordinated Universal Time 
(UTC) on 21 June 2001. 

In this example the cell size is 0.125 degrees in 
each spatial direction.  Dark areas (positive values) 
indicate cells where there are more flight plan 
points than track points. Light areas (negative 
values) denote cells where there are more track 
points than flight plan points.  Figure 6 shows the 
gridded lightning strike data for the same spatial 
grid and time period.  In each of these figures the x 
and y axes represent the change in latitude and 
longitude, respectively, from the center of the grid, 
in steps of 0.125 degrees. 

Next, we define the two-dimensional cross 
correlation between the flight plan/track difference 
matrix and the lightning strike matrix as 

∑ ∑
−= −=

−−=
M

Mi

N

Nj
mjlijiml LD ,,,χ  

where MMl K−= and NNm K−=  [6].  The 
cross correlation matrix , ml ,χ , represents the 
strength of the relationship between the difference 
in traffic and the lightning strikes a specified 
number of grid cells ( l  in longitude and m  in 
latitude) apart from each other. 

The calculation of the cross correlation matrix 
can be computationally expensive since, for each 
shift, we must calculate a sum over all of the grid 
cells being used.  As the size of a cell becomes 
smaller, and thus more cells are needed to capture 
the same physical piece of geography, it is easy to 
see that the size of the calculation becomes larger.  
However, there is a computationally efficient way 
of calculating correlations, including the two 
dimensional cross correlation we have described 
above, using (discrete) Fourier transforms. 
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Figure 5.  Difference Between Flight Plan and Actual Flight Track Densities, 0.125º x 0.125º Grid 

 

 

 

Figure 6.  Lightning Strike Density, 0.125º x 0.125º Grid 
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The two-dimensional discrete Fourier 
transform for an M by N matrix f is defined as 
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for 1010 −=−= NvMu KK , .  Here m and n 
represent position in the x and y (or longitude and 
latitude) directions, respectively, while u and v 
represent spatial frequencies in these directions.  
The inverse discrete Fourier transform is given by 
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for 1010 −=−= NnMm KK , .  In fact, the 
correlation between two functions is related to the 
convolution of those functions.  For the above cross 
correlation, we can compute the entire cross 
correlation matrix, for all shifts, with the one 
calculation 

{ })()( LFFT*DFFTIFFT ⋅=χ  

where FFT  represents the Fast Fourier Transform 
function, IFFT  the Inverse Fast Fourier Transform 
function, and FFT*(L) represents the complex 
conjugate of FFT(L) [7].  For this calculation to be 
accurate, we must pad each of the discrete functions 
D  and L  by zeros as an anti-aliasing technique.  
That is, for each function, the size of the discrete 
grid of data points that is input into the FFT is 

)12(2)12(2 +×+ NM ; however, all except the 
first )12()12( +×+ NM  positions are zero.  That 
allows the consideration that the data is periodic in 
both spatial dimensions without changing the form 
of the cross correlation grid. 

Figure 7 shows an example of the cross 
correlation matrix formed from the two data sets 
used in Figures 5 and 6.  In Figure 7, the x and y 
axes represent the shifts (l and m) in longitude and 
latitude cells for finding the cross correlation value.  
The figure quantifies, spatially, the impact that the 
weather of Figure 6 had on the traffic of Figure 5.  
For example, in Figure 5 one can see a dark area 
approximately 20 cells east and 25 cells south of the 
origin (represented as Area A), corresponding to a 

surplus of flight plans over actual traffic.  In Figure 
6, the principal convection is about 15 cells north of 
the origin.  Thus traffic was rerouted from an area 
about 20 cells east and 40 cells south of the main 
convective area.  This can be seen as Area A in 
Figure 7, which represents this shift of traffic 
relative to the convection.  One can also see routes 
in Figure 5 (indicated by B and C) that apparently 
were not used, or were used less than had been 
planned.  Equivalent structures are present in the 
cross correlation matrix, and indicate the position of 
these unused routes relative to the convection in the 
partition. 

We would like to distill the structures of the 
correlation matrix of Figure 7 into a single metric 
that captures in some sense the “average distance” 
that traffic was rerouted, and hence the efficiency of 
the rerouting.  There are various ways in which to 
construct such a metric from the cross correlation 
matrix, and we present one example here.  We 
propose a “correlation length,” derived from the 
magnitude of the cross correlation of Figure 7 as a 
function of the distance from the origin.  For 
numerical reasons, we are unable to compute this 
correlation length for partitions with little activity.  
Where there are sufficient weather-related 
difficulties, or large amounts of lightning, we 
expect the un-shifted position in the cross 
correlation function, 0,0χ , to be large.  That is, 
there should be a sufficiently large relationship 
between the difference in the planned and actual 
traffic and the number of lightning strikes in the un-
shifted partition. Therefore, we only compute a 
correlation length when δχ >0,0 , for some given 
threshold value, δ .  For example, when using data 
binned into one minute spatial grids in latitude and 
longitude, we used a threshold value of 56=δ .  
For larger grids, the threshold value is increased 
proportionally to the area of a typical cell.   
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Figure 7.  Cross Correlation of Flight Track/Plan Difference Matrix (Figure 5) and 
Lightning Strike Matrix (Figure 6) 

 

To find the correlation length for a partition 
that satisfies the criterion described above, we first 
average the cross correlation grid over the finite 
number of discrete distances that are represented by 
the various shifts in the grid.  That is, we define a 
function )(dcorr  as 
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and so on.  We then fit this discrete function (using 
least squares) to the continuous curve 

caexf bx +=)(  

with free parameters ba,  and c .  Once this fit is 
made, we define the correlation length to be λ  

where )0(1)( f
e

f =λ .  In other words, we find 

lambda by solving 

e
cacaeb +

=+λ . 

Figure 8 illustrates how λ is obtained for a 
particular partition.  The “noisy” curve is the 
average of the cross correlation matrix values at 
discrete distances, )(dcorr .  The (shifted) 
exponential function that has been fitted to 

)(dcorr  is also shown.  Additionally, Figure 8 
shows the computed correlation length ( 4.15=λ  
nautical miles) and the corresponding decrease in 
the correlation function, illustrating how the 
correlations drastically decrease as one moves 
further away from high-density lightning strike 
areas. 

Figure 8 addresses only one partition, that 
centered at 5.27 degrees latitude and 5.81−  
degrees longitude, using one minute spatial cells.  
Figure 9 presents a histogram of the correlation 
lengths seen over the entire nation (for those 
partitions that exceed the threshold).  The mean 
correlation length is 16.1 nautical miles. 
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Figure 8.  Cross Correlation of Flight Track/Plan Difference and Lightning Strike Grids as a Function of 
Shift Distance, and Associated Exponential Fit 

 
 

 

Figure 9.  Correlation Length Distribution, 
21 June 2001, 22:00-22:15 UTC 

 

 

The correlation lengths thus described and 
displayed in Figures 8 and 9 represent the distance 
beyond which aircraft are not significantly impacted 
by convective activity, on average.  The correlation 
length is scale invariant, meaning that a linear 
scaling of the lightning strike density or the flight 
plan/track difference density would not affect the 
statistic.2  This may or may not be a desirable 
characteristic for a NAS efficiency metric, 
depending on the ultimate objective of the analysis.  
Further research could be conducted to develop an 
equivalent statistic that is sensitive to the magnitude 
of the lightning strike matrix, and would therefore 
produce equivalent results for small reroutings 
around weak convection and large reroutings 
around strong convection. 

                                                      
2 Since the zero-shift correlation value must satisfy a threshold 
criterion in the current formulation, a linear scaling could in 
fact affect the correlation length.  By resetting the threshold as 
a function of the mean value of the product of the two matrices 
this problem would be avoided. 
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Conclusions 
In this paper we have demonstrated how 

aircraft track, flight plan, and convective activity 
densities can be calculated using ETMS and 
lightning-strike data.  The techniques of spatial 
statistics can then be used to systematically analyze 
these densities in order to quantify NAS 
performance, without the arbitrariness inherent in 
other approaches that attempt to identify 
“equivalent days.”  Some of the techniques 
proposed are computationally intensive, and, given 
current technologies, would not be suitable for daily 
calculation. 

We have presented two examples of such 
analyses in this paper.  In the first, we used 
densities of flight plan tracks and lightning strikes 
to construct an en route weather index, which 
provides an indication of the severity of weather 
relative to traffic patterns.  This en route weather 
index correlated very well with various NAS-wide 
delay indices, suggesting that it is a good indicator 
of weather severity.  In the second example, we 
used flight plan, actual track, and lightning strike 
densities to compute the cross correlation between 
convection and the flight plan/track difference.  
This cross correlation captures the impact of 
convective activity on flight trajectories.  Various 
metrics may be calculated from the resulting cross 
correlation matrix.  In the example, we proposed a 
“correlation distance” that reflects the distance 
beyond which convection has little impact on 
flights. 

A specific application of the cross correlation 
technique presented here might be to assess the 
effectiveness of FAA Traffic Flow Management 
(TFM) initiatives.  For example, as part of the 
Collaborative Decision Making (CDM) effort, the 
Collaborative Routing Coordination Tools (CRCT) 
are being developed by the FAA’s Free Flight 
Program Office and MITRE/CAASD.  CRCT is 
intended to aid en route traffic managers with 
rerouting traffic around flow-constrained areas, 
such as those surrounding thunderstorms [8].  
Correlation techniques similar to those described 
here could be used to assess the effectiveness of 
CRCT.  The correlation distance presented here 
could be modified to reflect the distance aircraft 
were rerouted (or delayed) per “unit” of convection.  
One could then test to see if this metric had 

decreased for a given facility (or nationally) 
following CRCT introduction. 
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